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1 Introduction and motivation

In the past couple of decades, multi-agent researchers and roboticists have fo-
cused on designing systems containing multiple, autonomous agents that work
together to accomplish a common objective. In natural systems, we have seen
how groups of animals can solve problems that could not be solved by solitary
individuals [1, 27]. Because of the emergent behaviors within multi-agent sys-
tems, the whole is sometimes greater than the sum of their parts. Roboticists
are interested in multi-robot cooperation because if intelligent teamwork can
be seen amongst a group of robots, then in the future they can probably co-
operate with humans also [7]. Also, because of the high level of redundancy
and use of decentralized control, they are without a single point of failure and,
thus, robust to complete crashes occurring when one part of the system breaks
[4, 17, 24, 28, 29, 30]. Unfortunately, the benefits of using multiple agents to
solve problems do not come free.

Researchers focused on multi-robot systems have found that robot-robot in-
terference can cause task completion performance to decrease as more robots are
added to the team [9, 14]. Along with the physical limitations, computational
problems also arise in multi-agent and multi-robot systems. When searching
through the multi-agent literature, four main problems are found. Two of the
problems, role allocation and task allocation, are nearly exclusive to multi-agent
systems, while the other two, task decomposition and action selection, are re-
lated to both multi and single-agent systems. Task decomposition is a divide-
and-conquer approach to problem solving, as it involves breaking up large tasks
into smaller, manageable subtasks. Task allocation is the problem of optimally
assigning these subtasks to agents. Action selection involves determining which
low level actions to take in order to complete an assigned task. Related to task
allocation is the higher level problem of role allocation. Typically, roles define
which tasks an agent should complete, and tasks influence the actions that an
agent takes. Because action selection is a problem that concerned researchers
focusing on single-robot systems, it will not be discussed here. An overview
of action selection research can be found in [26, 11]. Similarly, task decom-
position is a problem for both single-agent systems [] and multi-agent systems
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[22, 15] and will not be discussed here. Task and role allocation have been two
of the focuses of multi-agent and multi-robot research lately, but some work has
confused the two problems, and there has been little work in figuring out the
separation between these problems. This paper will attempt to define the two
problems and then give a survey of the research related to them.

2 Background information

Because distributed teamwork is present in natural systems such as social insect
groups [23, 1, 27], definitions of some key terms will be taken from the behavioral
ecology literature. To try and promote consistency within the robotics, multi-
agent, and biological literature, we will attempt to explain how various terms are
used throughout the respective literatures. From the biology literature, we find
Oster and Wilson defining a task as a “set of behaviors that must be performed
to achieve some purpose of the colony” [23, p. 326]. Anderson and Franks, also
biologists, use Oster and Wilson’s task definition, but in the context of overall
group fitness. They describe a task as being “an item of work that potentially
makes a positive contribution, however small, to inclusive fitness” [1]. Anderson
and Franks also mention subtasks, which are those sets of behaviors that are
only rewarded when the full task is completed [1]. Breaking a problem into
subtasks and then assigning those subtasks to agents of a team leads to the
problem of optimal assignment. How can the tasks be assigned to agents so
that the overall utility of the team is maximized? Some agents’ skills may be
well suited for some tasks and poorly suited for others. This is known as the
task allocation problem within the multi-agent and robotics literature.

What, then, is the role allocation problem? Researchers have actually used
the terms role and task interchangeably [8]. We believe that there is a definite
difference between the two, and we hope to shed some light on those differences.
Gerkey and Matarić use the two terms interchangeably in [7, 8], but do note
that role usually has a more time-extended connotation whereas tasks are more
transient in nature. We believe that task should be used as a unit of work,
whereas role should be used to describe the part or character that an agent
“plays” within the team. The role that an agent is currently in will most likely
define which tasks the agent can perform well or can perform at all. Some of
the confusion may be the result of a one-to-one mapping between role and task
within certain problem domains. For example, if the goal of a team containing
N members is to retrieve N labeled mines, then it is possible to assign a mine to
each agent and then say something akin to: ”The task of agent x is to retrieve
mine y.” It could also be presented in a different way: ”The role of agent x
is to be the mine-y-retriever.” In the first statement, task is used to refer to
the actual piece of work that is assigned to agent x, while role is used in the
second to describe the “character” that agent x plays within the group. The
distinction becomes more clear when a separate scenario is considered. Imagine
the N agents being assigned to retrieve mines and protect their home base. In
this case, the two roles are forager and soldier. The tasks that the agents work
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on are determined by the role that they are in. Because of the interrelationship
between tasks and roles within the multi-agent settings, both role allocation
and task allocation research is presented in this paper.

Nair et al. break up the decision making problems of cooperating agents
into role-taking and role-executing problems [20, 21]. The role-taking problem is
essentially that of role allocation, while role-executing is the problem of figuring
out which action to take while in a particular role. Although one could argue
that the role-taking problem could be encompassed by solving the role-executing
problem by making one of the actions a role can take actually switch the role of
the agent, Nair et al. make the distinction because doing so allows for the costs
of role-executing and role-taking to be considered separately. Nair et al. show
that, in general, the problem of finding a role-taking (or role allocation) policy
is NEXP-Complete even when the role-executing policy is held constant [21].

In [3], Cao et al. discuss some of the major issues when designing teams of
cooperative, mobile robots. Five research axes within the field are defined in the
paper. These include group architectures, resource conflicts, origins of coopera-
tion, learning, and geometric problems. Task decomposition and allocation were
intentionally left out of their work because at the time of writing little research
had been done in this area, the tasks that the cooperating robots were trying
to solve were not that difficult, and the two problems are directly related to the
group architecture that is being used. In the past decade the robotic systems
have become much more advanced than their predecessors, and the problems
have become more difficult. Also, a great amount of interest in multi-agent
teamwork has been created by well known problems such as RoboCup Soccer
[12]. Because of the vast amount of task and role allocation work that has been
produced in the past decade, along with the new motivations for role differenti-
ation created by problems such as RoboCup, we believe that a survey of the role
and task allocation work is now appropriate. Other surveys related to cooper-
ative mobile agents are Dudek’s taxonomy for swarm robotic systems [4] and
Panait and Luke’s survey of machine learning within cooperative multi-agent
systems [25].

3 Problem details

This section will discuss the work that has been done within role and task
allocation. Research that contains overlap between the two will be discussed in
detail, as one of the main purposes of this paper is to better define a separation
between the problems.

3.1 Task allocation

Work on task allocation within multi-agents is a subset of the distributed prob-
lem solving work with in the Artificial Intelligence community. In [33], Reid
and Davis describe task-sharing, where processing nodes decompose tasks into
subtasks and then spawn those off to other nodes, which in turn, can decompose
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their task into subtasks, and so on. Difficulty arises when deciding which nodes
should take which tasks so as to minimize processing time. Instead of processing
nodes, we are interested in cooperative, autonomous agents, whether they be
members of a simulated team in a video game [35] or physical robots demining
a mine field [16].

Early multi-robot architectures that were focused on solving the task decom-
position and allocation problems were designed to be flexible, fault tolerant, and
decentralized [22, 15]. To determine task allocations, negotiations take place
through bidding systems, where available agents place higher “bids” on tasks
they are well suited to work on. Agents with higher bids are then assigned to
these tasks. Tasks can be dynamically created, decomposed into smaller tasks,
and assigned at run-time, which is needed for these systems due to the uncer-
tainty with the environments. These early architectures paved the way for the
current research.

As claimed by Gerkey and Matarić in [7], most of the task allocation work
up to the point of the writing of their paper had been empirical and contained
little theoretical foundation. In this work, Gerkey and Matarić present a for-
mal framework for task allocation. Their taxonomy of the multi-robot task
allocation problem uses three criteria, with each criteria containing two values,
thus, creating eight classes of task allocation problems. The complexity of each
classification is analyzed separately, so that once new problems arrive, they can
be classified, and their theoretical complexity will be already known. Unfor-
tunately, not all task allocation research falls neatly within one of these eight
classifications, but the work done by Gerkey and Matarić does give a strong
theoretical foundation for the problem.

Phrases other than task allocation have been used to refer to this problem.
Task division is used in [32]. Division is used instead of allocation because the
area in which the robots were foraging was divided into sections and each robot
was responsible for foraging items within one specific section. Other multi-robot
research concerned with task allocation include [24, 17]. Also, Gerkey’s PhD
dissertation focuses on this problem [6]. Because there has been so much work
done on this problem, a majority of this paper will focus on the role allocation
problem. The point here was to give the reader a feel for what task allocation
is and the methods used to solve it, so that we can now describe how it relates
to role allocation.

3.2 Role allocation

The word role is used in theater to denote the character or part that an actor
plays. In sociology it is used to mean the “sets of actions taken within the
pattern of some institution” [2], and in the multi-agent literature, a role has been
used to refer to time extended tasks [8]. Role allocation is analogous to task
allocation, with the difference being role assignment instead of task assignment.
One may ask the following question: If task and role allocation are such similar
problems, then why consider them separately? We believe that role allocation is
a higher level problem, because an agent’s assigned role will affect which tasks it
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can and cannot perform well. Furthermore, an agent’s role may prevent it from
performing a task at all. Gerkey and Matarić began to use the word role, as
opposed to task, when they discussed teamwork in the RoboCup Soccer domain
[8]. The sophistication of the problem requires coordinated, intelligent behavior,
and thus, the use of specialized agents. As with any classification, there exist
grey areas where it is not clear how to classify some items. For example, in
Lebella et al.’s paper title Efficiency and Task Allocation in Prey Retrieval [14],
the authors use the terms loafer and forager to refer to the two separate tasks of
the agents, however, it is probably more appropriate to refer to these terms as
roles, since they define the parts each agent plays within the team. Within the
group of foragers, tasks such as “search upper right quandrant of environment”
or “retrieve mine at position X,Y” could be allocated. This is to take nothing
away from the work that was done by Lebella et al., we just wish to promote
consistency in usage of the terms role and task within the multi-agent context,
and this example illustrates the relationship between the task and role allocation
problems and shows how the terms may be confused.

In [21], Nair et al. present role reallocation, which is the reassigning of roles
when failures occur or when new tasks are created. They use role allocation
to refer only to initial role assignment. They make this distinction so the two
problems can be analyzed separately. Because we are interested in work dealing
with dynamic team behavior, we will use the phrase role allocation to refer
to both the initial role assignment and reassignment problems. As with task
allocation, researchers have used many different terms to describe role allocation.
These include such terms as team selection [38] and team formation [20]. The
remainder of this discourse will focus on the various issues of role allocation,
and if need be, its relation to task allocation.

4 Team compositions

When making the distinction between homogenous and heterogeneous team
compositions within the role allocation context, we are referring to both the
sets of roles that the cooperating agents can be in, and their initial chances of
being in those roles. The team composition of a multi-agent team is homogenous
if each member of the team can assume any one of the same set of roles, and
their initial chances of being in those roles are equal. Agents may differ in
their communication abilities, processing power, and physical structures, but
if they all have the same set of available roles and the same initial chances
of being in one of those roles, then their team composition with regards to
role allocation is considered homogenous. The initial chances of being in a
role are determined by the designer of the system. For example, if one robot
in a soldier/forager team is built to be durable and more powerful than the
other members, then it would make sense to assign that agent to the soldier
role, so the system designer could build the appropriate probabilities into the
system. Robot swarms containing (nearly) identical robots are a good example
of homogenous team composition [18]. In [18], an agent’s role is determined
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by its position, relative to that of its teammates. Therefore, its initial position
may affect its chances of being in a particular role. If the system designer does
not make a conscious effort to alter these chances, then we still consider the
team homogenous. The role allocation restrictions put forth by the designer
may be beneficial because they reduce the number of possible role allocation
combinations that can occur [38]. This reduction in complexity could come at
the cost of flexibility. In the scenario presented above, where a soldier/forager
team is gathering items while protecting a home base, the idea of giving the
bigger agent a higher probability of being a soldier is reasonable, but if there is
no chance for one of the weaker agents to assume the soldier role, then when
the large individual breaks down, the who team may fail.

5 Role allocation paradigms

Role allocation is the problem of assigning roles to agents so as to maximize
the overall utility of the group. With explicit role allocation, each agent has
a set of roles that it can be assigned, and the problem is to find the best
way to allocate these roles. This usually occurs through some algorithm where
agents individually decide their role, or they use a negotiation process through
communication with other agents. In either case, agents are explicitly deciding
to assign or reassign their role. With implicit role allocation, the assigning of
roles is much more subtle. In some of the implicit role allocation methods, the
roles themselves are not predefined but are learned, thus making it difficult to
tell when agents are even taking on different roles. We feel that it is important to
make a distinction between these two approaches because the former lends itself
to formal analysis, whereas the performance of the latter systems are usually
measured experimentally.

5.1 Implicit role allocation

In [14], foraging robots have a probability that determines whether or not they
will continue searching for prey when they return to the nest site. Robots adjust
their foraging probability, and as it approaches zero they become less likely to
forage. Robots remaining idle at the nest are referred to as loafers and benefit
the group because having too many foragers can sometimes decrease efficiency
due to increasing robot-robot interference [9]. No where in this system did the
robot explicitly choose to become a loafer or forager, yet these two roles still
exist. Through the interactions between the robots and their environment, the
self organizing nature of this system creates two types of agents.

Another example of implicit role allocation is seen in the formation move-
ment experiments of [28], where robots change their role based on their locations
relative to that of their teammates. The strategy used to change roles is dis-
covered by evolving neural network controllers for the robots. Implicit role
allocation can also occur through the neuroevolution strategy presented in [35].
In this work, Stanley et al. extend NEAT [36, 34] so that evolution occurs in
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real-time within a video game. Individuals within the population are separated
into various species based on differences in their neural network topologies. This
protects individuals that may have evolved new network structures, but have
yet to optimize them. It should be noted that even though individuals within
the population are speciated when reproduction occurs, all individuals are co-
operating on the same team. By allowing separate species to evolve within one
population, members of different species are essentially evolving separately and
thus have the opportunity to specialize and form different roles within the team.

Sometimes, the role that an agent takes on is dependent upon the agent, or
agents, it is interacting with. In [39], a group of simulated members of a wolf
pack interact with each other and with a user controlled wolf. When wolves
interact, they can either act to enforce their dominance or act submissively.
Over time, wolves begin to build social relationships with each other and a
dominance hierarchy is formed. Although the focus of their research was not on
teamwork, the method used to differentiate the status of agents could be used
to form a managerial type hierarchy. Agents at the top of the heirarchy could
become the leaders of the team and inform the lower members of what tasks to
complete. Because the leader-follower relationship between agents may not be
transitive, a complex network of relationships can emerge. This flexibility could
be desired, or it could become a problem for defining roles. For example, if agent
A is dominant over agent B, B is dominant over C, and C is dominant over A,
then who should be the leader when choosing roles? If only two of the agents
are interacting at any particular time, then the relationship is clear, but when
the three interact simultaneously, a cycle is created and could cause undesirable
behaviors. In most cases these types of problems are not found because the role
an agent is in is explicitly defined.

One of the difficulties with implicit role allocation is figuring out a way to
observe whether or not agents are even assuming different roles within a run.
The authors of [28] had to remove robots one-by-one in order to determine the
evolved function of the robots. Another drawback to implicit role allocation
is that agents do not usually have the ability to communicate their roles to
neighbors because they are not even aware of their current role. In Stanley
et al.’s work on rtNEAT [36], the agents would have to become aware of their
evolved, specialized abilities, and then communicate those abilities to other
agents.

5.2 Explicit role allocation

In explicit role allocation, agents make the conscious decision to take on a par-
ticular role. This is usually decided through some sort of negotiation procedure.
Problems that are solved through explicit role allocation have the benefit of
being formally analyzed using methods found in [7] and [21]. Being able to
formally analyze a problem allows experimenters and system designers to deter-
mine how close their role allocation algorithms come to producing the optimal
answer. Formal analysis also allows one to get an idea of the performance versus
efficiency tradeoffs for their particular system.
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6 Measuring effectiveness of role allocation strate-

gies

Although empirical analysis does show how one role allocation method compares
to another within a specific domain, it does little to give a deep understanding
of what the method can and cannot do, or what problems the method is and is
not well suited for. A solid mathematical foundation for any science is needed
in order to analyze and study the phenomena within that area.

As stated earlier, a taxonomy for the multi-robot task allocation problem
can be found in [7]. This classification consists of three axes: single-task robots
versus multi-task robots, single-robot tasks versus multi-robot tasks, and in-
stantaneous assignment versus time-extended assignment. Single-task robots
are those that can only execute one task at a time, while multi-task robots
can execute multiple tasks simultaneously. Similarly, single-robot task prob-
lems are ones that require only one robot per task, whereas multi-robot tasks
require a coalition of robots. Finally, instantaneous assignment differs from
time-extended assignment because it lacks planning for future events. Using
all combinations of these properties, eight types of multi-robot task allocation
problems are defined. Gerkey and Matarić reduce these eight types of problems
to well known problems in Computer Science so that problem complexity can
be easily analyzed. For example, problems that involve agents that can only
perform one task at a time, each task only requires one agent, and the agents
cannot plan for the future can be reduced to the optimal assignment problem [5]
and so can be solved in polynomial time. However, when the problem changes
slightly, and tasks start to require more than one robot, the problems become
NP-Hard. In [8], Gerkey and Matarić assume that agents’ role utilities are inde-
pendent of one another, and that the state of the art for solving problems with
interrelated utility problems like this are Markov decision processes [40] which
are too difficult to solve in a problem like RoboCup Soccer. Nair et al. actually
tackle this problem by modelling role allocation and reallocation problems with
distributed partially observable Markov decision processes (POMDPs) in [21].

7 Details of existing methods, models, and ar-

chitectures

7.1 Negotiation

Some of the earliest work on task allocation is seen in Lueth and Laengle’s
presentation of the KAMARA multi-robot architecture [15], which utilizes a
blackboard [10] communication mechanism where agents post bids on tasks
contained within a mission set. The agent to first post its valuation on the task
becomes a mediator and decides which agent is best fit for a particular task.
Once the mediator has determined this, it assigns the appropriate agent to the
task. It should be noted here, that the assignment of a mediator role to an
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agent is a form of role allocation. More information on negotiation methods of
role and task allocation can be found in [17, 24].

7.2 Machine learning

Martinson and Arkin use Reinforcement Learning in order to try and solve the
role allocation problem in a foraging task [16]. [19] show how a supervised
learning technique can be used to learn role assignments, and show an example
of their strategy in an automated steam condenser design experiment.

Neuroevolution [41], the process of evolving neural networks, is used in [28]
to evolve a controller that is used separately by each robot trying to achieve the
goal of coordinated movement. In this case, the roles themselves are an emergent
property of the system, and not explicitly defined by the system designers.
Another example of neuroevolution being used to implicitly evolve roles is seen
in [35].

8 Applications

Although theoretical techniques to analyze of the complexity of role allocation
algorithms are available [21], experiments qualitatively show the usefulness of
particular algorithms and give a way to compare different approaches that do
not lend themselves to easy theoretical analysis. Some problem domains were
constructed to test one particular algorithm, while others, such as the RoboCup
domains, have been used by many researchers.

8.1 RoboCup

One of the most well known domains of multi-agent and robotics research is
the RoboCup Soccer domain [12]. RoboCup Soccer is attractive to researchers
for several reasons. The first being that because it is so well known, and so
much research has been done using the domain, it is easy to compare results
from current research to results obtained by previous researchers. This benefit
is not present when one produces their own, ad hoc domain. Another reason for
its popularity is that the simulator can be downloaded for free by anyone, so
researchers can spend time working on their algorithms, as opposed to wasting
time constructing and designing the domain. For researchers interested in in-
vestigating role allocation methods, RoboCup soccer provides a dynamic, noisy
environment where agents with incomplete knowledge must work independently,
yet still collaborate in order to win their games. For role allocation work done
with the RoboCup Soccer domain, see [8, 37].

Because of the small number of agents in the RoboCup Soccer domain, it
might not be such an attractive domain for researchers concerned with testing
their role allocation algorithms. RoboCup Rescue might be more appealing, as
it consists of heterogeneous agents and a constantly changing, noisy environment
[13]. Also, the need for automated disaster response teams could greatly reduce
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the amount of casualties that occur when they strike, so the benefits of research
in this domain are numerous. For role allocation work done with the RoboCup
Rescue domain, see [20, 21, 31].

8.2 Military applications

[16] gives an example of a scenario where a team of agents are trying to discover
and transport mines back to a base station while enemy agents and terrain
obstacles pose problems. In [21], the authors use their role allocation algorithm
to give a solution the mission rehearsal domain. This domain consists of a
helicopter team containing scouts and transport helicopters transferring cargo
through a hostile area.

8.3 Foraging

The foraging problem is a general one and it encompasses other problems such
as toxic waste cleanup, disaster response, and demining a battle field [16]. Re-
searchers in the multi-agent community have usually focused on these types of
problems within the context of task allocation. Foraging can be accomplished
by a single individual, so it becomes easy to determine the changes in perfor-
mance when more than one agent is used. An example of implicit role allocation
in a foraging scenario is described in [14], where the roles of agents self organize
themselves so as to minimize the robot-robot interference problem.

[24] presents a new task for testing coordination strategies within a multi-
robot system. Various alarms are set off at random times, and it is the job of
the robots to locate these alarms and perform some action on them. [17] uses
the emergency handling problem to show that the best role allocation strategy
depends on the amount of sensor and actuator noise within the system.

8.4 Localization and mapping

A swarm of robots are used to distributively map an environment in [29]. In
order for this to occur, robots must be able to figure out their global coordi-
nates within the map. In [29] this is accomplished by assigning robots to be in
the landmark role. When in the landmark role, robots remain stationary and
constantly broadcast their position and heading to neighbors.

8.5 Coordinated movement

In [28], a homogenous team of robots must coordinate their actions so that
they all move together a certain distance. Robots are penalized for straying
from the group and rewarded for travelling together. Agents assume different
roles based on their relative locations within the team. Another example of
agents changing roles based on their relative positioning within a group is seen
in [18], where a swarm of robots must disperse throughout an environment while
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remaining communication connectivity. Robots on the boundaries of the group
are considered frontier robots and lead the way for the interior and wall robots.

9 Conclusions

Having a group of autonomous agents cooperate and form and reform teams
as their environment changes poses a difficult problem for artificial intelligence,
multi-agent system, and robotics researchers. Natural systems, especially social
insects, have shown that an extremely large number of individuals can accom-
plish what a single individual cannot. Large tasks can usually be decomposed
into smaller, more manageable tasks which can then be allocated to available
agents. The allocating of these tasks to agents in a way so that resource use is
minimized is the task allocation problem. Research on task allocation methods
for mobile robot teams has been going on for the past couple of decades. Tasks
such as box pushing, foraging, and part assembly have shown benefits for using
cooperative teams of agents. In recent years, an increase in problem complexity
has created a demand for more sophisticated teamwork architectures. Agents
in these systems can take on particular roles which end up defining their be-
haviors and which tasks they can and cannot complete. The problem of role
allocation has been proven to be NEXP-Complete [21]. This high level of com-
plexity will require future designers of multi-agent teams to develop extremely
sophisticated algorithms that can deal with the uncertainties of the agents’ envi-
ronment. Humans and other animals are able to solve highly complex problems
cooperatively through developed social relationships. It might be the case that
robots will need to do the same thing. Robots will have to trust that the in-
formation that they are receiving from their robot teammates is correct, and
they must be able to detect when failures have occurred. More importantly, hu-
mans interacting in human-robot teams will have to trust that their mechanic
teammates are capable of sophisticated, adaptive behavior, especially if they
are being relied on in military situations. One of the first steps towards this
goal is demonstrating cooperation in tasks such as RoboCup Soccer and other
benchmark domains that require high levels of cooperation. If it can be shown
that robots can work together to solve complex tasks, human-robot teams will
become more realizable.
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