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ABSTRACT
Picbreeder is an online service that allows users to collab-
oratively evolve images. Like in other Interactive Evolu-
tionary Computation (IEC) programs, users evolve images
in Picbreeder by selecting ones that appeal to them to pro-
duce a new generation. However, Picbreeder also offers
an online community in which to share these images, and
most importantly, the ability to continue evolving others’ im-
ages. Through this process of branching from other images,
and through continually increasing image complexity made
possible by the NeuroEvolution of Augmenting Topologies
(NEAT) algorithm, evolved images proliferate unlike in any
other current IEC systems. Picbreeder enables all users, re-
gardless of talent, to participate in a creative, exploratory
process. This paper details how Picbreeder encourages inno-
vation, featuring images that were collaboratively evolved.
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INTRODUCTION
Interactive Evolutionary Computation (IEC), i.e. artificial evo-
lution guided through human direction, can potentially cre-
ate significant digital artifacts without explicit design. IEC
applications generate a random population of individuals from
which the user selects those that are most appealing. Se-
lected individuals then become the parents of the next gen-
eration. As this process iterates, the individuals evolve to
satisfy the user. IEC is well-suited to domains in which
success and failure are subjective and difficult to formal-
ize. For example, traditional evolutionary algorithms would
struggle to determine whether an image is “attractive” or
not, yet humans can easily perform such evaluations. IEC
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can thus generate a variety of digital artifacts including im-
ages [23, 25, 26], music [8], particle systems [17], and danc-
ing avatars [6].

Collaborative Interactive Evolution (CIE) augments IEC to
involve multiple users, adding a social dimension that in-
creases the variety and number of solutions that can be evolved.
Yet effectively combining the opinions of multiple users is
nontrivial because the preferences and goals of multiple users
are often in conflict. Picbreeder [3], an online service where
Internet users collaborate to evolve pictures, introduces an
effective new approach to this challenge by allowing each
user to guide a branch of evolution on its own unique path.

Picbreeder users can begin evolving in one of two ways: In
the traditional option, users start from a random population
of images and select those that they like, which spawn a new
generation. When the user is satisfied with an image, he or
she publishes the image, making it visible to others. The key
idea in Picbreeder is that other users can alternatively begin
evolving from an already published image instead of from
scratch by branching the image, thereby continuing its evo-
lution. Through the compounding effect of branching, and
the ability of the underlying NeuroEvolution of Augmenting
Topologies (NEAT) algorithm to increase the images’ com-
plexity, users collaboratively search for images.

Picbreeder contributes a novel way to generate and maintain
a large catalog of user-created content by enabling collabo-
rative search through vast design spaces by multiple users.
It empowers users of all experience levels to enjoy being
recognized for their creative contributions. Users thereby
experience a new kind of creative social recreation through
playful collaborative exploration. While Picbreeder focuses
on generating images, it embodies a general framework that
can harness the power of a large group to search together.

This paper explains how Picbreeder allows users to collab-
oratively evolve images through its web-based portal and
demonstrates its potential through evolved images. A prin-
cipled analysis demonstrates how publishing and branching,
which are unique to Picbreeder within IEC, address key chal-
lenges inherent in many CIE systems.

BACKGROUND
This section reviews several technologies from which Picbreeder
draws its inspiration, beginning with groupware and then
moving to evolutionary approaches.
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Groupware
Groupware, which implements Computer Supported Coop-
erative Work (CSCW) [14], is software that coordinates users
interacting across a network for a shared purpose. For exam-
ple, Sourceforge [4] hosts open source projects and allows
software and documentation to be authored by loosely asso-
ciated groups across the Internet. In the Sourceforge com-
munity, there is an implicit branching of projects in which
many influence spin-off projects, or enable others.

Another example, Wikipedia [5], is a popular online ency-
clopedia that allows numerous users across the Internet to
edit and add subjects about which they have some exper-
tise. Similarly, in IBM’s Many Eyes [9], users can create and
share visualizations of data, from which the Internet com-
munity can draw and share their interpretations. While such
services encourage collaborative work, they also require spe-
cific talents or expertise, which limits participation.

An early collaborative system based explicitly on branching
was introduced by Jorda to help musicians collectively pro-
duce compositions [19]. In Jorda’s Faust system, users can
branch from a previously saved song and edit it to create a
variant that is then saved back into the tree. Faust produced
a collection of appealing songs, providing precedent for the
approach in Picbreeder. However, Faust did not employ an
evolutionary algorithm; rather, users had to directly manipu-
late the notes of the song and therefore required some basic
musical knowledge. In contrast, Picbreeder enables all users,
including non-experts, to contribute creatively.

Interactive Evolutionary Computation
In single-user interactive evolution [34], the user is presented
with a set of alternatives generated by the system. This initial
population is then evolved over generations through a pro-
cess similar to animal breeding: In each generation, the user
selects the most promising designs, which are then mated
and mutated to create the next generation. In effect, IEC as-
sists the user in exploring a potentially vast design space in
which he or she may have little knowledge or expertise.

IEC is often applied to images in what is commonly called
genetic art [24,27,35]. Genetic art programs follow the orig-
inal Blind Watchmaker idea from Dawkins [10], in which
simple genetically-encoded patterns are evolved through an
interactive interface. IEC principles have also influenced
practical digital graphics tools, such as Kai’s Power Tools
Texture Explorer [20] and Apophysis [2], which interactively
evolve image textures and digital flame designs, respectively.

While IEC is a powerful approach to helping users generate
digital artifacts, results are often limited by human fatigue
[34]. According to Takagi [34], a normal IEC process should
only require 10 to 20 generations from the user. However, it
is challenging to produce notable images within this limit.

Collaborative Interactive Evolution
CIE [33] systems involve multiple users in one IEC appli-
cation, hoping to create products with broader appeal and
greater significance. CIE systems can be physical installa-

tions or online services; each has unique methods through
which to merge input from different users.

Among the first CIE installations were two museum exhibits
by Sims [25,26]. The Genetic Images [25] exhibit let visitors
stand in front of several displays to select pictures to produce
the next generation. Other users could select individuals at
the same time, or continue the evolutionary run where prior
users left off. In the Galapagos [26] exhibit, visitors evolved
virtual three-dimensional creatures with a similar interface.
While these exhibits were innovative, the museum environ-
ment does not encourage users to frequently return to the
installation, and users cannot begin evolution from a point
other than where their immediate predecessors leaves off.

Pfeiffer [21] is another pioneering CIE system that allows
users to endorse candidates for further evolution in an on-
line, multiuser environment aimed exclusively at evolving
snowflakes. Even with this limited scope, Pfeiffer processed
over 68,000 user inputs from every continent since 2001.
While Pfeiffer demonstrates that users are willing to partic-
ipate in CIE, it raises the question whether a broader scope
of images would be possible to evolve collaboratively.

Szumlanski et al. [33] introduced a different CIE approach
based on conflict resolution. Users log in to vote on a par-
ticular individual selected by the system. To overcome user
fatigue, the system combines these inputs to form a fitness
function, i.e. a measure of quality, for a traditional genetic
algorithm. The genetic algorithm then evolves an individ-
ual to meet the combined user requirements. This approach
evolved characters for an interactive story. While the system
effectively circumvents user fatigue, it does not encourage
a proliferation of content because a large collection of user
input is combined to reach only a single objective.

Another system, Imagebreeder [16] also offers an online com-
munity coupled with an IEC client for evolving images. Users
can save their creations to a general pool to be viewed by the
larger community. However, Imagebreeder does not include
the ability to continue evolving others’ images, which means
that the complexity of images evolved is limited to what a
single user can evolve before fatiguing.

These systems highlight the intriguing potential for evolu-
tion to benefit from the collective input of users across the
world. However, they also signal a potential drawback: Users’
preferences are often in conflict, resulting in mediocre re-
sults that cannot satisfy divided opinions. Furthermore, ge-
netic representations often limit genuine creativity by con-
straining search to a predetermined set of possibilities (e.g.
only snowflakes [21]). To evolve a broad class of images,
an open-ended representation is needed that can potentially
represent anything. Because of its ability to complexify, the
NEAT evolutionary algorithm satisfies this requirement, as
explained in the next section.

NeuroEvolution of Augmenting Topologies (NEAT)
The creative process can be constrained for novices by con-
trolling the method through which the space of images is



searched. In Picbreeder, this constraint is provided by an
evolutionary algorithm called NeuroEvolution of Augment-
ing Topologies (NEAT [30, 32]), which addresses several
fundamental challenges in evolving complex structures. Al-
though NEAT was originally introduced as a method for
evolving artificial neural networks (ANNs), a major appeal
of NEAT is its ability to evolve increasingly complex struc-
tures of any type, so that evolutionary search is not limited
to a fixed space of possibilities.

A significant obstacle to evolving complex structures is that
heuristically determining the appropriate number of genes,
i.e. the number of dimensions in the solution space, is dif-
ficult for challenging problems. For example, how many
nodes and connections are necessary for an ANN that draws
a picture of a bicycle? The answers to such questions can-
not be based on empirical experience or analytic methods,
because little is known about the solutions. To address this
problem, instead of starting evolution in the space of the fi-
nal solution, NEAT begins with a population of small, simple
genomes and elaborates on them over generations by adding
new genes. Each new gene expands the search space, adding
a new dimension of variation that previously did not ex-
ist. That way, evolution begins searching in a small, easily-
optimized space, and adds new dimensions as necessary. This
approach is more likely to discover highly complex pheno-
types than an approach that begins searching directly in the
intractably large space of complete solutions. The process of
complexification, i.e. incrementally adding new genes over
generations, also occurs in nature, leading to increasing phe-
notypic complexity [22]. By starting minimally and gradu-
ally complexifying over the course of evolution, NEAT was
able to solve several difficult control problems [30, 32].

Although it was originally introduced to evolve ANNs, NEAT
is sufficiently general to evolve any variable-length geno-
type. Thus complexification is now a general tool for evo-
lutionary computation. The next section introduces NEAT-
based IEC for art, which is the basis for Picbreeder.

NEAT-based Genetic Art
Independent researchers have released several NEAT-based
genetic art programs, beginning with Mattias Fagerlund’s
DelphiNEAT-based Genetic Art (DNGA) in 2003 [11, 12].
DNGA was followed by Holger Ferstl’s SharpNEAT-based
Genetic Art (SNGA) in 2006 [13]. While these applications
evolve realistic-looking objects (see Stanley [29] for exam-
ples), they still can require a considerable number of gener-
ations to do so, and therefore are prone to user fatigue.

There also currently exists an online collaborative NEAT-
based genetic art system called the Living Image Project,
which was introduced on the world-wide-web in September,
2006 [1]. Living Image displays a population of color im-
ages generated by a NEAT-based genetic art program on a
web page where users can vote for their favorite candidate.
Each user is allowed to cast at most 25 votes in one day. Af-
ter about 300 votes, the next generation replaces the current
generation and the process begins again. The idea is to inte-
grate the preferences of a broad user population and thereby
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Figure 1. How CPPNs Work. The diagrams show how a CPPN is
converted to an image and how CPPNs are internally represented. (a)
The CPPN f takes arguments x and y, which are coordinates in a two-
dimensional space. When all the coordinates are drawn with an inten-
sity corresponding to the output of f , the result is an image. In this
example, f produces a triangular image. (b) The CPPN network graph
determines which functions connect to which. The connections are
weighted such that the output of a function is multiplied by the weight
of its outgoing connection. If multiple connections feed into the same
function then the downstream function takes the sum of their weighted
outputs. Note that the topology is unconstrained and can represent any
relationships. The depicted functions exemplify the CPPN’s ability to
compose functions chosen from a canonical set. This structure allows
the CPPN to represent a large and diverse space of patterns, biased by
the set of canonical functions.

choose parent images more intelligently. Unfortunately, evo-
lution is slow in such a system because many users must
contribute to a single selection event, and at the time of this
writing the project is only on its 24th generation of images
after one year. Furthermore, it is difficult for the system to
evolve toward a recognizable form because users have no
way to coordinate their potentially conflicting choices.

The main idea in DNGA, SNGA, and Living Image is to
enable NEAT to evolve a special kind of network that rep-
resents images. These evolved networks are called Compo-
sitional Pattern Producing Networks (CPPNs) because they
produce patterns by composing functions [28, 29]. The next
section explains how CPPNs represent arbitrary images.

Compositional Pattern Producing Networks (CPPNs)
A CPPN is a function of n Cartesian dimensions that outputs
a pattern in space. For example, a two-input CPPN produces
a two-dimensional image. For each (x, y) coordinate in that
space, its level of expression is output by the CPPN that en-
codes the image. Figure 1a shows how a two-dimensional
image is generated by a function of two parameters.

Internally, a CPPN is represented as a connected-graph (i.e.
a network) of functions chosen from a canonical set. The
structure of the graph represents how the functions are com-
posed to process each coordinate. Figure 1b shows an exam-
ple CPPN structure.

While CPPNs are similar to ANNs, they differ in their set of
activation functions and how they are applied. While ANNs
often contain only sigmoid functions (and sometime Gaus-
sian functions), CPPNs can include both types of functions
and many others. The choice of functions for the canoni-
cal set creates a bias toward specific types of patterns and
regularities. Thus, the architect of a CPPN-based genetic art
system can bias the types of patterns it generates by deciding
the set of canonical functions to include.



Furthermore, unlike typical ANNs, CPPNs are applied across
the entire space of possible inputs so that they can represent
a complete image. Because they are compositions of func-
tions, CPPNs in effect encode images at infinite resolution
and can be sampled for a particular display at whatever res-
olution is optimal. The next section details several ways that
CPPNs benefit image representation.

CPPN Image Representation
Representation is crucial in both evolutionary computation
and artificial intelligence. A good representation can both
efficiently encode complex information and also organize it
effectively for search. Particularly in evolutionary computa-
tion, significant research in recent years has sought to clarify
how complex structures can be encoded most efficiently for
evolutionary search [7, 18, 31, 32]. It is now widely recog-
nized that a good encoding allows information in the geno-
type to be reused in producing the phenotype. Encodings
with this property are called indirect encodings [31].

It turns out that CPPNs are an indirect encoding with several
powerful representational properties that make them particu-
larly suited to encoding and searching for spatial patterns. In
particular, they are designed to efficiently encode repetition,
repetition with variation, symmetry, and elaboration.

Repetition is essential to many common forms from fish scales
to window tilings and is naturally encoded in CPPNs that
include periodic functions, such as sine and cosine. These
functions produce a repetition of parts without the need to
duplicate the information that encodes each part. Repetition
with variation is another fundamental motif evident in e.g.
fingers and leaves. Repetition with variation means that a
pattern is repeated while varying each repeated element a
small amount. It is accomplished in CPPNs by combining
periodic functions with other functions (for instance, sines
and Gaussians). Symmetry, which is fundamental to faces,
animals and vehicles, allows the same information to encode
both sides of an object. Symmetry is produced in CPPNs by
symmetric functions, such as Gaussian. Finally, the ability
to gracefully elaborate is essential to image evolution. Elab-
oration encourages increasing complexity by making each
image a springboard to the next level of complexity. The
NEAT algorithm adds functions and connections to CPPNs
as they evolve, thereby elaborating the images they encode.
A full review of the capabilities of CPPN image representa-
tion can be found in [29].

CPPNs in Picbreeder include cosine, sine, Gaussian, iden-
tity, and sigmoid functions to represent the images. These
functions are chosen to capture regularities that appear fre-
quently in nature (e.g. symmetry, repetition, repetition with
variation) without intentional aesthetic bias.

THE PICBREEDER APPROACH
Picbreeder aims to address the primary challenges facing
CIE:

1. Empowering groups, regardless of skill, to collabora-
tively search a design space. While groupware often

coordinates users by sharing expertise [4, 5], few such
projects empower users who may lack such expertise.

2. Overcoming user fatigue. In existing single-user IEC
applications and CIE services, most users succumb to fa-
tigue before generating significant products (e.g. as in [1,
12, 13, 16]).

3. Proliferating content. Most CIE systems do not encour-
age a proliferation of content, but instead concentrate the
efforts of many users on single decisions [1].

4. Collaborating without diluting individual contribution.
While existing CIE systems aim to produce more mean-
ingful output by involving many users, they frequently av-
erage the contributions of many users to generate an im-
age that is not necessarily pleasing to any [1, 25, 26].

5. Encouraging participation. CIE systems need to en-
courage participation through recognizing user achieve-
ments and through a flexible interface, which most do
not [1, 25, 26].

This section describes the innovations that allow Picbreeder
to overcome these difficulties.

Empowering Groups to Collaboratively Search Designs
Users who participate in online communities are a largely
untapped resource for creativity. Specifically, even users
without special expertise can perform tasks that are too dif-
ficult or subjective for a computer. For example, comput-
ers still struggle to visually parse scenes, understand speech,
and, significantly for Picbreeder, appreciate art.

By allowing the user to direct what types of artifacts should
be proliferated, Picbreeder empowers users, regardless of
talent, to search a vast design space. Users simply select
which generated images they find more compelling. Through
the evolutionary process, the images are mutated to produce
a new generation. Because of the CPPN-NEAT algorithm,
the images will gradually become more complex and reflect
the selections of the user. Because of these mechanisms,
users can evolve complex digital content irrespective of their
level of experience, unlike in most groupware systems.

The Picbreeder IEC client program that supports evolving
images is shown in figure 2. The user breeds images by se-
lecting one or more images from the 15 displayed. The user
then presses Spawn to produce the next generation of images
from the current selections. In case the user does not find any
images that are worth selecting, the Redo button respawns
the current generation. The Back button allows the user to
return to a previous generation and restart the evolutionary
progression from there. The user can also navigate back up
to the current generation with the Forward button, much like
a web browser. The Save button stores the evolutionary pro-
gression of an image in the user’s account as an unpublished
image, so that the user can continue it later. When the user
decides that the image in the image panel is suitable, he or
she selects that single image and presses Publish. A publish-
ing interface then allows the user to share it with the com-
munity through the Picbreeder website. This simple design
aims to appeal to the broad Internet community so that ev-
eryone’s input can be harnessed to create evolved art.



Figure 2. The Picbreeder client program. The interface is designed to
be simple. It can spawn or re-spawn a new generation, move back and
forth through the generations, and either publish the image or save it
for later editing.

While some users may aim to evolve a particular image (e.g.
a snake), others may simply explore by selecting images that
happen to appear compelling. A novel image appearing in
one generation may inspire the user to continue in a differ-
ent direction than initially expected. Even if the user has no
concrete goal and is not familiar with the IEC process, the
images should become more compelling to the user through
the mechanics of the evolutionary process. In this way, the
client supports the user’s creative exploration of a design
space, allowing any user to continually guide the computer
in directions of his or her own interest.

Thus, in contrast to expertise-based groupware (Sourceforge
[4] and Wikipedia [5]), users without specific expertise can
contribute images to Picbreeder through the simple IEC client.
Picbreeder’s easy access (requiring only a Java-enabled web-
browser) encourages wide participation and the online for-
mat makes it possible for Picbreeder to scale to larger com-
munities than could be supported by a physical installation.

Overcoming User Fatigue
It likely takes many generations to find interesting designs
within a vast search space. Thus the chance is high that
within the typical 10 to 20 generations of IEC [34], the user
does not see anything significant, hence losing interest in
exploring further. Even if the user retains interest through-
out many more generations, searching over days can be too
much, even if it is spread over several sessions. Without
a means to accumulate many generations of evolution, it is
difficult for images to evolve into anything significant. User
fatigue is thus a fundamental problem in IEC [34] that single
user IEC systems do not explicitly address [12, 13].

Picbreeder addresses user fatigue through a mechanism called
branching. If the user finds an interesting image on the
Picbreeder website, he or she can then choose to branch it,
which means continue its evolution. As branches accumu-
late upon branches, it becomes easy for the complexity of
an image to compound for hundreds of generations with-

out fatiguing any single user. Because the user is likely to
branch from images that interest him or her and because the
IEC process steers images closer to the user’s preferences,
conflict over evolving of a single image is eliminated. The
originating image and the results of its new branches are all
stored separately on the Picbreeder website, allowing con-
tinued access to all of them.

A typical user session in Picbreeder begins with viewing
published images (as seen in figure 3), which can be filtered
by different criteria such as highest rated and newest. Users
can choose to branch any image they see, thereby entering
the IEC client program (figure 2), which loads a copy of
the root image’s CPPN. The user then continues the image’s
evolution through the IEC process, and publishes the branch
when satisfied with its appearance.

Figure 3. Example image view from the Picbreeder website. Any of
these images can be branched for further evolution.

When the user branches, Picbreeder follows the process il-
lustrated in figure 4. The collection of genomes evolved
throughout the generations of a single evolution session, along
with their associated images, is a series. When a series is
published, the last individual selected is its representative.
While Picbreeder retains every image in each series for fu-
ture analysis, users browsing the site only see representative
images. When branched, a representative’s genome spawns
the first generation of the new branched series. This design
accommodates branching while keeping individual series in
the chain intact, thereby allowing long chains of content to
grow while minimizing the work of each individual user.

Because NEAT lets images complexify throughout evolu-
tion, images evolved through a chain from many other users
may have already gained significant complexity. Therefore,
users can immediately begin with complex structures through
branching. Figure 5 illustrates the benefit of branching from
an already-complex image. In 5a the user required 40 gen-
erations to evolve from a random initial starting point to a
compelling image. In contrast, it took only 14 generations in
5b to evolve the final image as a branch from a prior image
because the new image borrows significant structure from its
parent (i.e. a shoreline, a skyline, and the general layout of
the scene). In this way, user fatigue is overcome.



Figure 4. How branching works in Picbreeder. The server saves each
set of generations in a series. When new series are branched from series
0, its representative genome spawns their initial generations.

(a) Evolved from random

(b) Branched

Figure 5. Overcoming user fatigue through branching. The example
in (a) was evolved from scratch (i.e. from a random initial image) in 40
generations, beginning with the individual on the left and ending on the
right. In (b), the user branched from the individual on the left to yield
the individual on the right (another landscape) in only 14 generations
by reusing some of the existing image’s structure.

Content Proliferation
Some CIE systems [1, 33] combine user input to generate
only a few products, which means that the amount of con-
tent generated per person is less than in single-user IEC. In
contrast, branching in Picbreeder creates a new image with
every branch. Importantly, an image may be branched mul-
tiple times, and all images are preserved indefinitely. Thus,
instead of needing many users to generate few images [1],
Picbreeder allows even a few users to generate many.

Furthermore, content is only displayed from images that users
found worthwhile to publish. Thus, what results is a prolifer-
ation of meaningful content through ever-expanding branches.
Interestingly, although all branches can be ultimately traced
back to an initial series that started from nothing but a com-
pletely random population, a surprisingly diverse and mean-
ingful set of distinct styles and themes nevertheless prolifer-
ates.

Collaboration Without Diluting Individual Contribution
Although systems like The Living Image Project [1] are sem-
inal in promoting the idea of CIE, their focus is to merge the
artistic sensibilities of several individuals, which can obfus-
cate the contributions of the individual user. It is possible for
users to cancel out each others’ contributions by pulling in
opposite artistic directions. Furthermore, in most CIE sys-
tems [1,25,26,33], it is difficult to determine what contribu-
tions each user made to the evolution of a particular image.
If users are not recognized for their contributions, they may
lack motivation to participate in the system.

Picbreeder’s branching also addresses this problem. Each
lineage is tracked such that although a branched image is
linked to its parent, the user can nevertheless continue evo-
lution in any way desired. Each chain of branches is influ-
enced by every contributor in the chain, yet each individual
user takes it on a path chosen solely by that user.

Picbreeder provides a simple interface for browsing the im-
ages and users that have contributed to a lineage tree. Recall
that each image displayed on the site is a representative of a
series that began with its parent series’ representative. The
most proximate series in a image’s lineage can be inspected
in a detailed view panel (figure 6). The user can browse the
lineage tree in either direction by clicking on the parent or
children representatives.

Figure 6. Navigating the tree of life. This view shows both the children
and the parent of an image. Users can explore the tree by clicking on
any image.

In this way, branching creates content that embodies the tastes
and ideas of many different users, all while maintaining in-
dividual ownership and creative autonomy.

Encouraging Participation
Without an active user base, images cannot branch and com-
plexify. A major challenge for any groupware is to assemble
a critical mass of users to become productive [15]. An effec-
tive method to entice users is to highlight the most appeal-



ing content from which to branch. Picbreeder therefore also
motivates participation through image ratings and user rank-
ings, and enables users to find interesting images through
tagging, browsing and searching mechanisms.

Users can rate interesting images and thereby credit other
users for their creations. The average rating is shown under
the image. The front page shows a group of all time top rated
images, which sorts the images in descending order by av-
erage rating. Furthermore, the Picbreeder front page shows
the most branched, which are images ordered by the num-
ber of times they have been branched to evolve new images.
These views aim to maximize participation by immediately
showing users images that have generated the most interest.
They also encourage users to publish interesting images, so
that they too can be featured on the front page. In addition,
Picbreeder assesses overall rankings for each user, based on
the number of unique users who have branched off one of
their images. This ranking encourages users to contribute
images that others would want to branch.

Picbreeder further helps users find interesting images from
which to branch through tagging, browsing, and searching.
Tags associated with an image during publishing let users
find appealing images. Users can search for tags with a
search-engine style interface. In addition, tags are automati-
cally grouped into browseable categories and subcategories.
The text boxes in which tags are entered during publishing
suggest tags as the user types to reduce redundancy. The
most frequent tags form the top-level categories. Images
with these tags are queried for their other associated tags,
which provide the next level of the categorical hierarchy.
This approach creates browseable hierarchies without ad-
ministrative overhead (figure 7). In these ways, Picbreeder
makes participation easy and fun, which is essential for CIE
to succeed.

Figure 7. Example browseable categories from the Picbreeder website.
The categories shown are subcategories of the “Alien” tag that were
automatically discerned.

SYSTEM ARCHITECTURE
Figure 8 illustrates the architecture of Picbreeder, which is
a database-driven website. The database stores meta-data
about the images including lineage, authorship, ratings, and
tags. The images and the CPPNs that generate them are
stored on the standard file system.

The Java-based IEC client communicates to the server through
web service calls. The client performs the IEC process, in-
cluding image rendering, on the user’s local machine, thereby
reducing the load on the server. When the user saves his or
her image, the generating CPPN is transmitted to the server
in XML form, and saved in the user’s account. The user
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Figure 8. System architecture. The main site, including image views
and lineage information, is viewed through a web browser. The user
evolves images through a Java client that sends the results back to the
server to be stored on the filesystem and database.

can then tag and publish the image. This architecture was
designed to facilitate quick, efficient online interaction and
dynamic storage.

THE PICBREEDER ONLINE EXPERIMENT
The Picbreeder website [3] opened to the public on August 1,
2007, and by January 1, 2008, had been visited over 12,000
times. There are 196 registered users, 102 of whom have
published an image, averaging 19.11 images per active user
(sd = 64.09, median = 3). The site is driven by collabora-
tion: each user influences an average of 3.54 other users (sd
= 6.99, median = 1) through branching and 86.8% of the
images are branched from another image.

Branching does help overcome the limitations that user fa-
tigue places on traditional IEC systems. While published
images are evolved for an average of 26.23 generations (sd
= 34.47, median = 15) during a single user session, each im-
age has an average of 154.11 cumulative generations (sd =
134.28, median = 114) from an average of 5.95 ancestors
(sd = 5.03, median = 5). Of the series in the top rated im-
ages, only 4.46% of them were evolved within the typical
20 generation limit for single users [34]; most of the highly
appealing images in the system took many more cumulative
generations to evolve, and therefore would not have resulted
from a traditional IEC process. Branching also facilitated the
proliferation of images, evidenced by over 2,100 published
images on the site.

Ratings also helped encourage participation. While the av-
erage image in Picbreeder is branched by 0.31 users (sd =
0.84, median = 0), images in the top rated category (i.e. the
224 images with at least three rating votes and at least a rat-
ing of 3.0) were branched by an average of 1.47 users (sd =
2.01, median = 1).

In the Picbreeder community, there is a correlation between
recognition and participation. The ten users who published
the most images, while making up less than 5% of the user
population, published two thirds of the top rated images. The
ten users branched by the most other unique users (who, as a



result, had the highest user rankings) created 61.03% of the
top rated images.

Tagging is also widely used: The average published image
is tagged 1.57 times (sd = 0.83, median = 1). The ten most
frequent tags (“Face,” “Eye,” “Alien,” “Animal,” “Creature,”
“Spaceship,” “Cool Pattern,” “Bird,” “Insect,” “Head”) in-
clude 372 (17.7%) of the published images, indicating that
tagging does effectively categorize frequent categories.

Figure 9 features images that were collaboratively evolved
in Picbreeder. The images vary from simple geometry (9h)
to organic forms (9c). Each image in the figure is identi-
fied by a tag given to it by its creator. The variety of images
evolved supports the choice of CPPNs as an appropriate im-
age representation, and shows that Picbreeder encourages a
proliferation of content.

Picbreeder’s CPPN representation and IEC client allow users
to evolve a succession of elaborations on the same theme, as
shown in the sequence of faces (each one the representative
of one series in the chain) in Figure 10. The images grad-
ually become more elaborate and recognizable as a face as
evolution progresses. This sequence demonstrates elabora-
tion through complexification, acquiring new features while
preserving the properties of previous generations.

Figure 11 shows a tree of life, collaboratively evolved by 13
different users. Each image represents a branch of its par-
ent series (depicted by its representative). The root image
was evolved from random starting images generated by the
client. A variety of forms proliferate in breadth and depth.
The average number of generations taken to evolve each se-
ries (16.35) is consistent with Takagi’s estimate of 10 to 20
generations to expect from an individual IEC user [34]; how-
ever, through its entire chain of preceding branches back to
the root, the deepest series accumulated an order of magni-
tude more generations (195), demonstrating that Picbreeder
does overcome the problem of user fatigue: Users still spend
the expected number of generations evolving each image,
but the total number of generations is much higher. Further-
more, while the 13 users were able to collaborate to generate
content, they still maintain ownership of their contributions.

DISCUSSION
Picbreeder has already begun to accumulate an online col-
lection of cataloged digital content unlike any CIE system to
date. Through its ability to branch and through the complex-
ification of NEAT, Picbreeder has generated several com-
plex images, many of which resemble real objects (figure 9).
This fact is significant because the search space of images
is astronomically large and all evolved objects descend ulti-
mately from random initial images. While many genetic art
programs generate images that are appealing, most do not
evolve recognizable objects. In effect meaningful images
are like needles in a haystack. Thus, collaboration through
branching has proven effective at harnessing the power of
multiple users to search an otherwise prohibitively large space.

Systems like Picbreeder naturally raise the question of whether

(a) Car (b) Skull (c) Eye

(d) Cove (e) Animal (f) Spider

(g) Landscape (h) Plane (i) Jupiter

(j) Beetle (k) Cartoon (l) Camera

(m) Pig (n) Latté (o) Steering Wheel

Figure 9. Examples of collaboratively evolved images. These images, all
entirely evolved by Picbreeder users, exhibit a variety of themes from
mechanical (a) to organic (f).

such technologies purport to replace skilled artists or rede-
fine the meaning of art. Yet such controversy is unwarranted
because CIE does not aim to replace skilled artists and de-
signers, but instead to empower users to create and design
artifacts within otherwise inaccessible domains (i.e. to find
the needle in the haystack). While the utility of the results
is an important contribution, the unique social and creative
experience is equally significant.

CONCLUSIONS AND FUTURE WORK
This paper introduced Picbreeder, a novel approach to CIE.
To address the main challenges in CIE, several new tech-
niques were developed for Picbreeder. The Picbreeder site



Figure 11. Tree of life. This actual phylogenetic tree, whose root image is at the top, was created by 13 users branching and evolving.

has already actively engaged many users in a collaborative
process of design exploration despite the online experiment
only being active for less than five months. As images are
branched further, the NEAT algorithm will ensure that their
complexity increases, continually creating new directions for
users to explore. We look forward to seeing what images
will be evolved after thousands of generations by hundreds
of users. We also hope that the Picbreeder design inspires
others to develop similar systems that proliferate digital con-
tent through the combined effort of an online community.

Picbreeder will be augmented in several ways in the future.
First, color will be added, which requires specially-designed
CPPNs. Second, Picbreeder will also allow branching by
mating different images. Branching from more than one im-
age would allow combining popular concepts.

The system architecture that supports Picbreeder is not lim-
ited to evolving images. Any artifact that can be evolved
through IEC can also be evolved collaboratively through a
system like Picbreeder, including music, three-dimensional
images, synthesized voices, and possibly even intelligent agents.

Perhaps Picbreeder-like systems will become common in the
future. For example, a car company might deploy a Picbreeder-
like system to evolve new car designs, and offer to man-

ufacture the most popular ones. More likely in the near-
term, as the popularity of personal rapid prototyping ma-
chines increases, Picbreeder-like systems can evolve three-
dimensional objects that are later downloaded and rendered
by a machine. The popularity of innovations like mobile
computing and blog widgets will also provide new outlets
for Picbreeder-like systems in the future.
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