
Sensor-Emitter Simulation Description

Adam Campbell

July 7, 2009

1

Contents

1 Introduction 3

1.1 Brief overview of program . 3
1.2 Compiling/running the program . 3

2 Parameter file 3

2.1 General simulation parameters . 3
2.1.1 FIELD WIDTH and FIELD HEIGHT . 3
2.1.2 DISPLAY WIDTH and DISPLAY HEIGHT . 4
2.1.3 SENSOR DISCRETIZATION and EMITTER DISCRETIZATION 4
2.1.4 BACKGROUND COLOR . 4

2.2 Output parameters . 4
2.2.1 WRITE DATA . 4
2.2.2 DATA WRITE INTERVAL . 4
2.2.3 OUTPUT DIR . 4

2.3 Frequency params . 4
2.3.1 NUM FREQUENCIES . 4
2.3.2 SENSOR COLOR i and EMITTER COLOR i . 4

2.4 Sensor parameters . 5
2.4.1 NUM SENSOR GROUPS . 5
2.4.2 SENSOR POSITIONER i . 5
2.4.3 SENSOR PHYSICAL RADIUS i . 5
2.4.4 SENSOR COMM DISTANCE i . 5
2.4.5 SENSOR UPDATE PROBABILITY i . 6
2.4.6 SENSOR INITIAL FREQUENCY ASSIGNER i . 6
2.4.7 SENSOR MOVER i . 6
2.4.8 SENSOR FREQUENCY UPDATER i . 6

2.5 Emitter parameters . 7
2.5.1 NUM EMITTER GROUPS . 7
2.5.2 EMITTER POSITIONER i . 7
2.5.3 EMITTER PHYSICAL RADIUS i . 7
2.5.4 EMITTER SIGNAL INFO i . 7
2.5.5 EMITTER INITIAL FREQUENCY ASSIGNER i . 7
2.5.6 EMITTER SIGNAL CONTROLLER i . 8
2.5.7 EMITTER MOVER i . 8

3 Simulation details 8

3.1 Sensor behavior . 8
3.2 Emitter behavior . 8

4 Output files 8

4.1 runX.meta . 8
4.2 runX.params . 9
4.3 runX.sensedCount . 9
4.4 runX.sensingSensors . 9

5 Known issues 9

5.1 Visualization freezes . 9

2

1 Introduction

This document describes the Sensor-Emitter code written in the Summer of 2009 by Adam Campbell1 at
the University of Central Florida. The document is organized as follows: Section 2 describes the details of
the simulation’s parameter file. Section 3 describes what happens during each time step of the simulation.
Section 4 describes the output files that are written for each run, and finally, Section 5 lists some known
issues with the simulator.

1.1 Brief overview of program

The program simulates a sensor network in a two-dimensional environment consisting of sensors and emitters.
Both sensors and emitters are assigned one of N different frequencies, with sensors in frequency i being able
to detect emitters in frequency i. Each sensor is described by its position in the environment, the frequency
it is sensing, and its communication distance. Each emitter is described by its position, the direction of its
signal, the distance the signal travels, the angle the signal spreads, and the frequency of the signal. The
details of sensors and emitters are described in Sections 3.1 and 3.2, respectively.

1.2 Compiling/running the program

The simulation is written in Java2 1.5.0 and uses the MASON3 Multiagent Simulation Toolkit Version 13.
Make sure to install the latest version of the Java SDK before running and compiling the program. All
simulation code can be found in the mason/sim/app/sensor emitter/ directory, and generic utility files
can be found in mason/sim/util amc/.

To compile the code, enter the mason directory and type:

javac sim/app/sensor emitter/*.java

To run the simulation visualization program, enter the mason directory (if you’re not already there) and
type:

java sim.app.sensor emitter.GraphicalUserInterface

To run the simulation without any visualization (useful if you want to gather statistics by running a
batch of runs), enter the mason directory and type:

java sim.app.sensor emitter.Simulation -for [number of steps]

Where number of steps is an integer value indicating the number of steps to run the simulation.

2 Parameter file

The simulation is controlled by the run.conf parameter file found in the mason directory. The parameter file
allows the user to specify general simulation parameters, output parameters, frequency parameters, sensor
parameters, and emitter parameters. These parameters are described in more detail below. Details can also
be found in the run.conf.README file in the mason directory.

2.1 General simulation parameters

2.1.1 FIELD WIDTH and FIELD HEIGHT

FIELD WIDTH and FIELD HEIGHT specify the width and height of the simulation environment. Both parame-
ters take int values.

1Send any inquiries to acampbel@cs.ucf.edu
2http://java.sun.com/
3http://www.cs.gmu.edu/ eclab/projects/mason/

3

2.1.2 DISPLAY WIDTH and DISPLAY HEIGHT

DISPLAY WIDTH and DISPLAY HEIGHT specify the width and height of the visualization window that is shown
on the screen. Note, this does not have to be the same as FIELD WIDTH and FIELD HEIGHT. Both parameters
take int values.

2.1.3 SENSOR DISCRETIZATION and EMITTER DISCRETIZATION

SENSOR DISCRETIZATION and EMITTER DISCRETIZATION are used by the Continuous2D class in the MASON
package. These parameters affect the performance of the simulation, as they determine the number of
agents that are returned whenever a getObjectsWithinRange() function is called on a Continuous2D. I
typically set SENSOR DISCRETIZATION to the maximum communication distance of any sensor, and I set
EMITTER DISCRETIZATION to the maximum distance that any emitter emits its signal. Finding optimal
values for these is probably tricky, so I don’t really spend too much time tweaking them. Both parameters
take int values.

2.1.4 BACKGROUND COLOR

BACKGROUND COLOR specifies the color of the simulation’s background. It takes three int values in the range
[0, 255] specifying the color’s red, green, and blue values.

2.2 Output parameters

2.2.1 WRITE DATA

WRITE DATA indicates whether or not to write output for this simulation run. Details on what is written out
is described in Section 4. This parameter takes a boolean value, i.e., true or false.

2.2.2 DATA WRITE INTERVAL

DATA WRITE INTERVAL specifies how often output is written to the output files. When set at 1, data is written
every single time step. I wouldn’t suggest setting this value to anything other than 1. This parameter takes
positive int values.

2.2.3 OUTPUT DIR

OUTPUT DIR is a String indicating the directory that the output is written (if WRITE DATA is set to true).

2.3 Frequency params

2.3.1 NUM FREQUENCIES

NUM FREQUENCIES specifies the number of frequencies that are used by sensors and emitters in the simulation.
It takes a positive int as its value.

2.3.2 SENSOR COLOR i and EMITTER COLOR i

For each integer 1 ≤ i ≤ NUM FREQUENCIES, there should be a SENSOR COLOR i and EMITTER COLOR i

parameter specifying the colors of sensors and emitters, respectively. When a sensor is in frequency i, it is
drawn as a SENSOR COLOR i colored filled circle. When an emitter is in frequency i, its signal is drawn in
color EMITTER COLOR i. Each SENSOR COLOR i and EMITTER COLOR i parameter take in three or four int

values in the range [0, 255]. The first three values specify the red, green, blue values for the color, and the
optional fourth value specifies the alpha value for the color. I usually don’t use the alpha value, as it slows
down the simulation, but when I do use it, I use it for the emitters.

4

2.4 Sensor parameters

2.4.1 NUM SENSOR GROUPS

Sensors are created in groups. This allows the user to give different behaviors to groups or individual
sensors. NUM SENSOR GROUPS specifies the number of sensor groups in the simulation. For each integer
1 ≤ i ≤ NUM SENSOR GROUPS, there should be the following parameters:

• SENSOR POSITIONER i

• SENSOR PHYSICAL RADIUS i

• SENSOR COMM DISTANCE i

• SENSOR UPDATE PROBABILITY i

• SENSOR INITIAL FREQUENCY ASSIGNER i

• SENSOR MOVER i

• SENSOR FREQUENCY UPDATER i

These parameters specify how sensor group i is created and are described in detail below. NUM SENSOR GROUPS

takes a non-negative int value.

2.4.2 SENSOR POSITIONER i

SENSOR POSITIONER i determines how many sensors to make and where to put those sensors. It can take
on one of two values: SinglePositioner and GridPositioner.

SinglePositioner is used to create one sensor at the specified location in the environment. Its form is
as follows:

SinglePositioner [x] [y]

where x and y are the coordinates of the sensor. These two parameters are of type double.
GridPositioner is used to create a rectangular grid of sensors. Rows and columns are evenly spaced in

the rectangle specified by the parameters. Its form is as follows:

GridPositioner [rows] [cols] [xAnchor] [yAnchor] [width] [height]

where rows and cols are the number of rows and columns of sensors that are to be created, xAnchor and
yAnchor are values indicating the position of the up-left-most sensor, and width and height are the width
and height of the rectangle that the sensors are created in. rows and cols are of type int, and the other
four parameters are of type double

2.4.3 SENSOR PHYSICAL RADIUS i

SENSOR PHYSICAL RADIUS i specifies how big to draw the sensors in the simulation. It has no effect on the
dynamics of a simulation as sensors are always treated as point objects when computing the distance between
sensors-sensors and sensors-emitters. It takes a double value.

2.4.4 SENSOR COMM DISTANCE i

SENSOR COMM DISTANCE i specifies how far each sensor broadcasts information to its neighbors. All enabled
sensors within the range of a broadcasting sensor receive the message. The performance of the simulation
decreases as this parameter and the number of sensors increases. Sensors use the information from their
neighbors to decide which frequency to sense. This parameter takes a double value.

5

2.4.5 SENSOR UPDATE PROBABILITY i

SENSOR UPDATE PROBABILITY i gives the probability that a sensor update its frequency during each time
step. When this value equals 1.0, the sensors call their frequency updater every single time step. As this
value decreases, so too, does the average number of sensors that perform an action each time step. This
value takes a double in the range [0, 1]. Note, if the value is 0.0, sensors won’t change their frequency.

2.4.6 SENSOR INITIAL FREQUENCY ASSIGNER i

SENSOR INITIAL FREQUENCY ASSIGNER i determines how the sensors are initially assigned their frequencies
and can take one of the following two values: RandomAssigner and HomogeneousAssigner.

RandomAssigner assigns random frequencies to each of the sensors in the group. It does not take
additional parameters.

HomogeneousAssigner is used to assign the same frequency to each sensor in the group. Its form is as
follows:

HomogeneousAssigner [frequency]

where frequency is of type int in the range [0, NUM FREQUENCIES−1] and specifies which frequency
to assign all of the sensors. Note that the frequencies used throughout the simulation code are zero-based.

2.4.7 SENSOR MOVER i

SENSOR MOVER i determines how the sensors move in their environment. It can take one of three values:
StationaryMover, FixedWaypointMover, and RandomWaypointMover.

StationaryMover does not take any additional parameters and is used when you don’t want the sensors
to move.

FixedWaypointMover is used to move a sensor repeatedly between a fixed number of waypoints. Its form
is as follows:

FixedWaypointMover [x1] [y1] [x2] [y2] ... [xn] [yn]

where xi and yi are the ith waypoint. Once the sensor has reached waypoint i, it moves on to waypoint
i + 1. When it reaches waypoint n, it cycles back to waypoint 1. All xi and yi are of type double.

RandomWaypointMover moves the sensors around randomly within the specified rectangle. A waypoint is
randomly generated in the given area, and once the sensor reaches that point, a new waypoint is randomly
generated. This process is continuously repeated. Its form is as follows:

RandomWaypointMover [xAnchor] [yAnchor] [width] [height]

where xAnchor and yAnchor are values indicating the position of the up-left-most sensor, and width and
height are the width and height of the rectangle that the sensors move in. Each of these parameters is of
type double.

2.4.8 SENSOR FREQUENCY UPDATER i

SENSOR FREQUENCY UPDATER i indicates the algorithm that the sensors use to determine which frequency to
sense. It can take one of the following four values: StationaryFrequencyUpdater,
Method1FrequencyUpdater, Method2FrequencyUpdater, and Method3FrequencyUpdater.

StationaryFrequencyUpdater does nothing to the frequencies, i.e., the sensors never sense anything
other than their initially assigned frequency.

Method1FrequencyUpdater uses the messages that a sensor currently has to count the number of neigh-
boring sensors in each one of the frequencies. The sensor also takes into account its own frequency when
making these counts. With these counts, the sensor determines the frequencies that are the least represented,
and then chooses randomly amongst one of these frequencies.

6

Method2FrequencyUpdater differs from Method1FrequencyUpdater in two ways: First, the sensor does
not take into account its own frequency when obtaining the counts. Second, if its own frequency is one of
the least represented, then the sensor stays in its current frequency. This helps to reduce the number of
times sensors switch their frequencies.

Method3FrequencyUpdater has the sensor randomly choose from one of the frequencies. Note, the sensor
could choose its own frequency when randomly choosing one.

More details on the three previous frequency updating algorithms can be found in Campbell and Wu [1].

2.5 Emitter parameters

2.5.1 NUM EMITTER GROUPS

Like sensors, emitters are created in groups. This allows the user to give different behaviors to groups or
individual emitters. NUM EMITTER GROUPS specifies the number of sensor groups in the simulation. For each
integer 1 ≤ i ≤ NUM EMITTER GROUPS, there should be the following parameters:

• EMITTER POSITIONER i

• EMITTER PHYSICAL RADIUS i

• EMITTER SIGNAL INFO i

• EMITTER INITIAL FREQUENCY ASSIGNER i

• EMITTER SIGNAL CONTROLLER ASSIGNER i

• EMITTER MOVER i

These parameters specify how emitter group i is created and are described in detail below.
NUM EMITTER GROUPS takes a non-negative int value.

2.5.2 EMITTER POSITIONER i

EMITTER POSITIONER i determines how many emitters to make and where to put those emitters. It can take
on one of two values: SinglePositioner and GridPositioner. The details of these are described above in
Section 2.4.2.

2.5.3 EMITTER PHYSICAL RADIUS i

EMITTER PHYSICAL RADIUS i specifies how big to draw the emitters in the simulation. It has no effect on
the dynamics of a simulation as emitters are always treated as point objects when computing the distance
between sensors and emitters. It takes a double value.

2.5.4 EMITTER SIGNAL INFO i

EMITTER SIGNAL INFO i specifies the signal properties for the emitters in the group. It takes four parameters,
emitDirectionX, emitDirectionY, emitDistance, and emitSpread.
emitDirectionX and emitDirectionY determine the initial direction of the emitters, emitDistance is the
distance that the signal travels, and emitSpread is the total angle that the signal spreads. All four of these
parameters are of type double.

2.5.5 EMITTER INITIAL FREQUENCY ASSIGNER i

EMITTER INITIAL FREQUENCY ASSIGNER i determines how the emitters are initially assigned their frequencies
and can take one of the following two values: RandomAssigner and HomogeneousAssigner. The details of
these are described above in Section 2.4.6.

7

2.5.6 EMITTER SIGNAL CONTROLLER i

EMITTER SIGNAL CONTROLLER i determines how the emitters direct their signals. It takes one of two values:
StationarySignalController and FixedPointSignalController.

StationarySignalController does nothing to the initial directions of the emitters’ signals. It takes no
additional parameters.

FixedPointSignalController allows the user to specify a point in the environment that the emitter(s)
always directs its signal towards. Its form is as follows:

FixedPointSignalController [targetX] [targetY]

where targetX and targetY are the coordinates of the point that the emitter points its signal towards.
These two values are of type double.

2.5.7 EMITTER MOVER i

EMITTER MOVER i determines how the emitters move in their environment. It can take one of three values:
StationaryMover, FixedWaypointMover, and RandomWaypointMover. The details of these are described
above in Section 2.4.7.

3 Simulation details

During each time step of the simulation, the sensors and emitters are randomly ordered and processed one
at a time. That is, both sensors and emitters are updated asynchronously, and from one time step to the
next, the order that the agents are updated differs. The following two subsections describe what happens to
each sensor and emitter during each step of the simulation.

3.1 Sensor behavior

A sensor that is not disabled performs the following actions each time step: First, with probability
SENSOR UPDATE PROBABILITY i (see Section 2.4.5) the sensor updates its frequency using its frequency
updater (see Section 2.4.8). Next, it clears all of the incoming messages that it had from neighboring
sensors. After this it moves to a new location using its agent mover (see Section 2.4.7), and then it obtains
the list of emitters that it can sense. Finally, it broadcasts information about its current frequency to
neighboring sensors.

If a sensor is disabled, it simply clears all of its incoming messages.

3.2 Emitter behavior

An emitter that is not disabled performs the following actions each time step: First, it moves to a new location
using its agent mover (see Section 2.5.7). Finally, it uses its signal controller to control the parameters of its
signal (see Section 2.5.6).

A disabled emitter does nothing.

4 Output files

If WRITE DATA is true, then the files described in the remainder of this section are written in OUTPUT DIR.
See Section 2.2 for more information on these parameters.

4.1 runX.meta

This file gives the random number generator’s seed for this run along with a time stamp indicating when
the run took place. The seed can be used to duplicate runs.

8

4.2 runX.params

This file is a copy of the parameter file used for the run.

4.3 runX.sensedCount

For each time step of the simulation, a line is printed out containing the number of sensors that are sensing
each emitter. Thus, if there are four emitters, there will be five columns in this file (one for the time step,
plus a column for each emitter).

4.4 runX.sensingSensors

A line is printed in this file for each sensor that senses an emitter during any time step of the simulation.
Each line contains the time step that the sensor sensed the emitter, the sensor’s id, the emitter’s id, and the
frequency of the sensor when it sensed the emitter. Note, a line is printed for each time step that a sensor
senses an emitter, even if a sensor senses the same emitter for multiple, consecutive time steps.

5 Known issues

5.1 Visualization freezes

The program sometimes freezes when first hitting the start button on the visualizer. The program does not
respond, even when trying to close it out by clicking the window’s X button. To close the program when
this happens, hit Ctrl-C at the command prompt where you started the program. This bug is being looked
in to.

References

[1] Adam Campbell and Annie S. Wu. On the significance of synchroneity in emergent systems. In Proceedings

of the Eighth International Conference on Autonomous Agents and Multiagent Systems, pages 449–456,
2009.

9

